WEST BENGAL STATE UNIVERSITY

B.Sc. Honours Part-I Examination, 2021

Mathematics

Paper: MTMA-I

Time Allotted: 2 Hours
Full Marks: 50
The figures in the margin indicate full marks.
Candidates should answer in their own words and adhere to the word limit as practicable. All s.symbols are of usual significance.

GROUP-A

Answer any three questions from the following

1. (a) Let a and b be two positive integers such that G.C.D of $a, b=(a, b)=1$. Prove that $(a c, b)=(c, b)$.
(b) Let $a>1$ and m, n are positive integers. Prove that $\left(a^{m}-1, a^{n}-1\right)=a^{(m, n)}-1$.
2. If p is prime then prove that there exist no positive integers a and b such that $a^{2}=p b^{2}$.
3. Solve: $111 x \equiv 75(\bmod 321)$.
4. (a) Expand $\cos 5 \theta$ in powers of $\cos \theta$.
(b) Find all the values of $(-i)^{\frac{3}{4}}$.
5. Express i^{\prime} in the form $a+i b$, with a, b reals. Use it to find the value of $\sin \left(\log i^{i}\right)$ in integer.
6. If $z=x+i y$ then prove that $|\sinh y| \leq \max (|\sin z|,|\cos z|) \leq \cosh y$.
7. (a) Find $f(x-3)$ if $f(x-2)=4 x^{4}+3 x^{2}-x+2$.
(b) If the expression $x^{3}+3 p x^{2}+6 q x+r$ and $x^{2}+2 p x+2 q$ have a common factor, show that $4\left(p^{2}-2 q\right)\left(4 q^{2}-p r\right)=(r-2 p q)^{2}$.
8. If a, b, c, are roots of $x^{3}+q x+r=0$, form the equation whose roots are $\frac{b^{2}+c^{2}}{a^{2}}$, $\frac{a^{2}+c^{2}}{b^{2}}, \frac{b^{2}+a^{2}}{c^{2}}$.
9. Use Strum's function to show that the roots of the equation $x^{4}+5 x^{3}-13 x+5=0$ are all real and distinct.

GROUP-B

$10 \times 1=10$
 Answer any one question from the following

10. (a) Let A, B, C be three non-empty subsets of a set S. Then prove that, $(A \backslash B) \times C=(A \times C) \backslash(B \times C)$.
(b) A relation ρ on the set of real numbers \mathbb{R} is defined as follows: $a \rho b$ if and only if $|a| \leq b$. Show that ρ is transitive but neither reflexive nor symmetric.
(c) Define injective and surjective mappings.

Let $f: A \rightarrow B, g: B \rightarrow C, \quad h: B \rightarrow C$ be three mappings such that f is surjective and $g \circ f=h \circ f$. Prove that $g=h$.
11. (a) Let \mathbb{N} be the set of all positive integers. Let R be the relation on \mathbb{N} defined by $R=\{(a, b) \in \mathbb{N} \times \mathbb{N}: a-b \leq 0\}$.
Prove that R is a partial order relation on \mathbb{N}.
(b) If $f: S \rightarrow T$ is one-one onto, then prove that $f^{-1}: T \rightarrow S$ is one-one onto.
(c) Prove that a semigroup is a group if it a quasigroup.
12. (a) In a group G, prove that $\left(a^{-1}\right)^{-1}=a$, where $a \in G$ and hence show that group of even order contains an element of order 2 .
(b) In an Abelian group G, prove that $(a b)^{n}=a^{n} b^{n}$ for all $a, b \in G$, where n is an integer.
(c) Prove that anon-empty subset H of a group G is a subgroup of G if and only if for all

$$
a, b \in H, a^{-1} b \in H .
$$

13. (a) If R is ring with unity 1 , then show that R has characteristic n if and only if $n \cdot 1=0$.
(b) Prove that every finite integral domain is a field.
(c) Show that $\mathbb{Q}(\sqrt{2})=\{a+b \sqrt{2}: a, b \in \mathbb{Q}\}$ is a subfield of the field \mathbb{R} of real numbers, where \mathbb{Q} is the set of rational numbers.

GROUP-C

Answer any one question from the following

14. If A be a skew-symmetric matrix and $(I+A)$ be a non-singular matrix, then show that $B=(I-A)(I+A)^{-1}$ is orthogonal, where I is the identity matrix of the same size as A.
15. Compute the inverse of the matrix A by using row operations, where,

$$
A=\left[\begin{array}{ccc}
3 & 1 & 1 \\
4 & 2 & -1 \\
7 & 3 & 1
\end{array}\right] .
$$

16. Find the non-singular matrices P and Q such that $P A Q$ is in the normal form and hence find the rank of the matrix

$$
A=\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & -1 & -1 \\
3 & 1 & 1
\end{array}\right] .
$$

B. Se./Purt/I/Hons./M'TMA-1/20121

1\%. Apply laplaces method alonesecond and third rowis of prove that

$$
\left|\begin{array}{cccc}
a & b & c & d \\
-b & a & d & -c \\
-c & -d & a & b \\
-d & c & -b & a
\end{array}\right|=\left(a^{2}+b^{2}+c^{2}+d^{2}\right)^{2},
$$

12. For a square matrix A of order n, prove that $\Lambda(\operatorname{adj} A)=(\operatorname{adj} A) A=(\operatorname{det} A) I_{n}$, where I_{n} denotes the identity matrix of order n.
13. Reduce the quadratic form $2 x^{2}-1 y z+6 z x+y^{2}+z^{2}$ into its normal form and obtain the rank, signature and nature of the form.

(isOUP-1)

Answer any one guention from the following

20. (a) A company has a manufacturing unit producine two types of products, product A and B.

At a time only one type of production is possible. It requires 35 minutes to produce one unit of product A and 25 mimutes to produce one unit of product B. The raw material required is 1.4 kes for one unit of preduct A and 2.0 kgs for one unit of product B. The factory can run 35 hours per weck and the rave material available is 140 kg per week. The profit for the products are Rs, $18($ and Rs, 230) per unit of product A and product B respectively, Pormulate an I, pp to maximize the profit.
(b) Solve eraphically the 1,pp:

Maximive: $z=2 x_{1}+3 x_{2}$,
Subject to $4 x_{1}+3 x_{2} \leq 12$

$$
\begin{aligned}
& 4 x_{1}+x_{2} \leq 8 \\
& x_{1}-x_{2} \leq-3, x_{1}, x_{2} \leq 0
\end{aligned}
$$

21. (a) Verify whether $x_{1}=1, x_{2}=2, x_{3}=1$ is a feasible solution of the system of equations:

$$
\begin{aligned}
& 2 x_{1}+3 x_{2}+5 x_{3}=13 \\
& 3 x_{1}-x_{2}+3 x_{3}=4
\end{aligned}
$$

Reduce it to a basic feasible solution, if posssible.
(b) Show that $(2,0,1)$ is a solution of the sysitem of equations

$$
\begin{aligned}
& 2 x_{1}+3 x_{2}+4 x_{3}=8 \\
& x_{1}+3 x_{2}+2 x_{3}=4
\end{aligned}
$$

Justify whether this is a basic solution. Vind another solution of the system which is a basic solution, state basic and non-basic variables.

(iROUPW

Section-1

Answer any one guestion from the following

22. Reduce the equation $5 x^{2}+4 x y+8 y^{2}-14 x-20 y-19=0$ to its canonical form and bence identify the conic represented by it.
23. Show that the product of the perpendicular distances from the point $\left(x_{1}, y_{1}\right)$ to the lines represented by $a x^{2}+2 h x y+b y^{2}=0$ is $\frac{a x_{1}^{2}+2 h x_{1} y_{1}+b y_{1}^{2}}{\sqrt{(a-b)^{2}+4 h^{2}}}$.
24. Show that the triangle formed by the lines $a x^{2}+2 h x y+b y^{2}=0$ and $l x+m y=1$ is right angled if $(a+b)\left(a l^{2}+2 h l m+b m^{2}\right)=0$.
25. If the straight lines $r \cos \left(\theta-\alpha_{i}\right)=p_{i}, i=1,2,3$ are concurrent, prove that $p_{1} \sin \left(\alpha_{2}-\alpha_{3}\right)+p_{2} \sin \left(\alpha_{3}-\alpha_{1}\right)+p_{3} \sin \left(\alpha_{1}-\alpha_{2}\right)=0$.
26. Show that the equation of a circle passing through the pole can be written in the form $r=A \cos \theta+B \sin \theta$, where A, B are constants.

Section-II

Answer any one question from the following

 $f m m+g n l+h l m=0$ are parallel if $\sqrt{a f} \pm \sqrt{b g} \pm \sqrt{c h}=0$.28. Find the mirror image of the point $(2,-1,3)$ about the plane $3 x-2 y+7 z=0$.
29. Find the equation of the plane passing through the point $(2,5,-8)$ and perpendicular to each of the planes $2 x-3 y+4 z+1=0$ and $4 x+y-2 z+6=0$.
30. A variable plane with constant distance p from the origin cuts the coordinate axes at A , B, C. Three planes are drawn through the points A, B, C parallel to the coordinate planes. Show that the locus of the points of intersection is given by $\frac{1}{x^{2}}+\frac{1}{y^{2}}+\frac{1}{z^{2}}=\frac{1}{p^{2}}$.
31. Find the equation of the straight line passing through the origin and interest both the lines

$$
3 x+2 y+4 z-5=0=2 x-3 y+4 z+1 \text { and } 2 x-4 y+z+6=0=3 x-4 y+z-3
$$

N.B. : Students have to complete submission of their Answer Scripts through E-mail / Whatsapp to their own respective colleges on the same day / date of examination within I hour after end of exam. University / College authorities will not be held responsible for wrong submission (at in proper address). Students are strongly advised not to submit multiple copies of the same answer script.

